Introduction

This problem is a standard linear-quadratic optimal control problem with pointwise state constraints, but no constraints on the control variable. It appears in Meyer et al. [2005] as a test example for the so-called Lavrentiev regularization approach. By the latter, optimal control problems with state constraints of the form $y(x) \geq y_{c}(x)$ are approximated by problems involving mixed control-state constraints $y(x)+\varepsilon u(x) \geq y_{c}(x)$. While problems with pointwise state constraints usually involve a measure-valued Lagrange multiplier, see Casas [1986], the corresponding quantity in the regularized problem is a function.

The following state-constrained problem and its solution appear in [Meyer et al., 2005, Section 7, Example 2] and it features a line measure as the state constraint multiplier.

Variables \& Notation

Unknowns

$$
\begin{array}{ll}
u \in L^{2}(\Omega) & \text { control variable } \\
y \in H^{1}(\Omega) & \text { state variable }
\end{array}
$$

Given Data

The given data is chosen in a way which admits an analytic solution.

$$
\begin{aligned}
& \Omega=(0,1)^{2} \quad \text { computational domain } \\
& \Omega_{1}=\left\{x=\left(x_{1}, x_{2}\right) \in \Omega: x_{1}<0.5\right\} \quad \text { subdomain of } \Omega \\
& \Omega_{2}=\left\{x=\left(x_{1}, x_{2}\right) \in \Omega: x_{1}>0.5\right\} \quad \text { subdomain of } \Omega \\
& \widehat{\Gamma}=\left\{x=\left(x_{1}, x_{2}\right) \in \Omega: x_{1}=0.5\right\} \quad \text { line inside } \Omega \\
& y_{d}=\left\{\begin{array}{ll}
-0.5+x_{1}^{2}, & x_{1}<0.5 \\
0.75, & x_{1} \geq 0.5
\end{array} \quad\right. \text { desired state (discontinuous) } \\
& u_{d}=\left\{\begin{array}{ll}
2.5-x_{1}^{2}, & x_{1}<0.5 \\
2.25, & x_{1} \geq 0.5
\end{array} \quad\right. \text { desired control (continuous) } \\
& y_{c}=\left\{\begin{array}{ll}
2 x_{1}+1, & x_{1}<0.5 \\
2, & x_{1} \geq 0.5
\end{array} \quad\right. \text { state constraint (continuous) }
\end{aligned}
$$

Note that there is a typo in the specification of y_{d} in [Meyer et al., 2005, Section 7, Example 2].

Problem Description

$$
\begin{array}{rll}
\text { Minimize } & \frac{1}{2}\left\|y-y_{d}\right\|_{L^{2}(\Omega)}^{2}+\frac{1}{2}\left\|u-u_{d}\right\|_{L^{2}(\Omega)}^{2} \\
\text { s.t. } & \left\{\begin{aligned}
-\triangle y+y=u & \text { in } \Omega \\
\frac{\partial y}{\partial n}=0 & \text { on } \partial \Omega
\end{aligned}\right. \\
\text { and } & y \geq y_{c} \quad \text { in } \bar{\Omega} .
\end{array}
$$

Optimality System

The following optimality system for the state $y \in H^{1}(\Omega)$, the control $u \in L^{2}(\Omega)$, the adjoint state $p \in H^{1}(\Omega)$ and the state constraint multiplier $\mu \in M(\bar{\Omega})$, given in the strong form, characterizes the unique minimizer.

$$
\begin{aligned}
-\triangle y+y & =u & & \text { in } \Omega \\
\frac{\partial y}{\partial n} & =0 & & \text { on } \partial \Omega \\
-\triangle p+p & =y-y_{d}-\mu_{\Omega} & & \text { in } \Omega \\
\frac{\partial p}{\partial n} & =-\mu_{\partial \Omega} & & \text { on } \partial \Omega \\
u-u_{d}+p & =0 & & \text { in } \Omega \\
y-y_{c} & \geq 0 & & \text { in } \bar{\Omega} \\
\mu & \geq 0 & & \text { in } M(\bar{\Omega}) \\
\left\langle\mu, y-y_{c}\right\rangle_{M(\bar{\Omega}), C(\bar{\Omega})} & =0 & &
\end{aligned}
$$

The space $M(\bar{\Omega})$ is the dual of $C(\bar{\Omega})$ and it consists of all signed, real, regular Borel measures on $\bar{\Omega}$. Here, μ_{Ω} and $\mu_{\partial \Omega}$ denote the restrictions of the measure μ to Ω and its boundary, respectively.

Supplementary Material

The optimal state, adjoint state, control and state constraint multiplier are known analytically:

$$
\begin{aligned}
y & =2 \\
p & = \begin{cases}0.5-x_{1}^{2}, & x_{1}<0.5 \\
0.25, & x_{1} \geq 0.5\end{cases} \\
u & =2 \\
\langle\mu, y\rangle_{M(\bar{\Omega}), C(\bar{\Omega})} & =\int_{\Omega_{2}} y(x) \mathrm{d} x+\int_{\widehat{\Gamma}} y(s) \mathrm{d} s \quad \text { for } y \in C(\bar{\Omega}) .
\end{aligned}
$$

Note that μ consists of a regular part (the characteristic function of Ω_{2}) plus a singular part (the line measure concentrated on $\widehat{\Gamma}$). In particular, the boundary part $\mu_{\partial \Omega}$ vanishes.

Revision History

- 2014-11-14: added missing term u_{d} to the objective (thanks to Stefan Takacs)
- 2012-11-14: problem added to the collection

References

E. Casas. Control of an elliptic problem with pointwise state constraints. SIAM Journal on Control and Optimization, 24(6):1309-1318, 1986. doi: 10.1137/0324078.
C. Meyer, A. Rösch, and F. Tröltzsch. Optimal control of PDEs with regularized pointwise state constraints. Computational Optimization and Applications, 33(2-3):209-228, 2005. doi: $10.1007 / \mathrm{s} 10589-005-3056-1$.

