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Introduction

This problem is a prototypical example for a convection dominated stationary diffusion
problem. Such problems are known to produce boundary layers and to lead to unphysical
oscillatory solutions in conventional discretization schemes.

The present problem was originally proposed in [Collis and Heinkenschloss, 2002, Ex-
ample 3] and discretized using an SUPG (streamline upwind Petrov Galerkin) approach.
Discontinuous Galerkin schemes for the same problem were analyzed in Yücel et al.
[2013].

Variables & Notation

Unknowns

u ∈ L2(Ω) control variable

y ∈ H1(Ω) state variable

Given Data

The given data is chosen in a way which admits an analytic solution. The diffusion
parameter ε > 0 and the constant convection direction c can be freely chosen. In Collis
and Heinkenschloss [2002] and Yücel et al. [2013], the values ε = 10−2 and

c = (cos θ, sin θ)> with θ = 45◦ = π/4

= (1/2)
√

2 (1, 1)>
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were used.

Ω = (0, 1)2 computational domain
Γ its boundary
x = (x1, x2) coordinate in Ω

η(z) = z − exp((z − 1)/ε)− exp(−1/ε)

1− exp(−1/ε)
boundary layer function

η′(z) = 1− 1

ε
· exp((z − 1)/ε)

1− exp(−1/ε)
its first derivative

η′′(z) = − 1

ε2
· exp((z − 1)/ε)

1− exp(−1/ε)
its second derivative

ξ(z) = η(1− z) boundary layer function
ξ′(z) = −η′(1− z) its first derivative
ξ′′(z) = η′′(1− z) its second derivative

f = −ε η′′(x1) η(x2)− ε η(x1) η′′(x2)

+ c ·
(
η′(x1) η(x2)
η(x1) η′(x2)

)
− ξ(x1) ξ(x2) right hand side

yd = −ε ξ′′(x1) ξ(x2)− ε ξ(x1) ξ′′(x2)

− c ·
(
ξ′(x1) ξ(x2)
ξ(x1) ξ′(x2)

)
+ η(x1) η(x2) desired state

Problem Description

Minimize
1

2
‖y − yd‖2L2(Ω) +

1

2
‖u‖2L2(Ω)

s.t.

{
−ε4y + c · ∇y = f + u in Ω

y = 0 on Γ.

Optimality System

The following optimality system for the state y ∈ H1
0 (Ω), the control u ∈ L2(Ω), the

adjoint state p ∈ H1
0 (Ω) characterizes the unique minimizer.

−ε4y + c · ∇y = f + u in Ω

y = 0 on Γ

−ε4p− c · ∇p− (div c) p = −(y − yd) in Ω

p = 0 on Γ

u− p = 0 in Ω.
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Note that the coefficient (div c) in the adjoint equation vanishes for the given constant
velocity field c.

Supplementary Material

The optimal state, adjoint state, control and state constraint multiplier are known ana-
lytically:

y = η(x1) η(x2)

p = ξ(x1) ξ(x2)

u = p.

Note that the boundary layer for the state lies near the right and upper boundary (where
x1 = 1 or x2 = 1), while the boundary layer for the adjoint state is located on the opposite
parts of the boundary.
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