Introduction

Here we have a simple distributed optimal control problem of the Poisson equation with a potential term, and with pointwise bound constraints on the control. Problems of this type are treated extensively in [Tröltzsch, 2010, Chapter 2], and are sometimes refered to as the *mother problem* type. The present problem is special in the sense that the control acts in a distributed way on the entire domain Ω , and that the state is observed on the entire domain as well. Moreover, the non-trivial part of the solution is rotationally symmetric.

This problem and analytical solution appear in [Tröltzsch, 2010, Section 2.9.2].

Variables & Notation

Unknowns

$$u \in L^2(\Omega)$$
 control variable
 $y \in H^1(\Omega)$ state variable

Given Data

The given data is chosen in a way which admits an analytic solution. This solution is rotationally symmetric on a circle of radius 1/3 strictly contained in Ω .

$\Omega = (0,1)^2$	computational domain
Γ	its boundary
$\widehat{x} = (0.5, 0.5)$	center of Ω
$y_{\Omega} = -\frac{142}{3} + 12 \ x - \hat{x}\ ^2$	desired state
$e_{\Omega} = 1 - \operatorname{proj}_{[0,1]} \left(12 \ x - \hat{x}\ ^2 - \frac{1}{3} \right)$	uncontrolled force
$e_{\Gamma} = -12$	boundary observation coefficient

Problem Description

Minimize
$$\frac{1}{2} \|y - y_{\Omega}\|_{L^{2}(\Omega)}^{2} + \int_{\Gamma} e_{\Gamma} y \, \mathrm{d}s + \frac{1}{2} \|u\|_{L^{2}(\Omega)}^{2}$$

s.t.
$$\begin{cases} -\Delta y + y = u + e_{\Omega} \quad \text{in } \Omega \\ \frac{\partial y}{\partial n} = 0 \quad \text{on } \Gamma \\ \text{and} \quad 0 \le u(x) \le 1 \quad \text{in } \Omega. \end{cases}$$

Optimality System

The following optimality system for the state $y \in H_0^1(\Omega)$, the control $u \in L^2(\Omega)$ and the adjoint state $p \in H_0^1(\Omega)$, given in the strong form, characterizes the unique minimizer.

$$\begin{split} - \triangle y + y &= u + f & \text{in } \Omega \\ \frac{\partial y}{\partial n} &= 0 & \text{on } \Gamma \\ - \triangle p + p &= y - y_\Omega & \text{in } \Omega \\ \frac{\partial p}{\partial n} &= e_\Gamma & \text{on } \Gamma \\ u &= \text{proj}_{[0,1]}(-p) & \text{in } \Omega \end{split}$$

Supplementary Material

The optimal state, adjoint state and control are known analytically:

$$y = 1$$

$$p = -12 ||x - \hat{x}||^2 + \frac{1}{3}$$

$$u = \begin{cases} 1, & x \in \Omega_3 \\ 12 ||x - \hat{x}||^2 - 1/3, & x \in \Omega_2 \\ 0, & x \in \Omega_1 \end{cases}$$

where the subdomains are defined as follows:

$$\Omega_{1} = \{ x \in \Omega : ||x - \hat{x}|| < 1/6 \}$$

$$\Omega_{2} = \{ x \in \Omega : 1/6 \le ||x - \hat{x}|| < 1/3 \}$$

$$\Omega_{3} = \{ x \in \Omega : 1/3 \le ||x - \hat{x}|| \}.$$

References

F. Tröltzsch. Optimal Control of Partial Differential Equations, volume 112 of Graduate Studies in Mathematics. American Mathematical Society, Providence, 2010.